

DG2000 Series Function/Arbitrary Waveform Generator

Distribution in the UK & Ireland

Characterisation, Measurement & Analysis Lambda Photometrics Limited Lambda House Batford Mill Harpenden Herts AL5 5BZ United Kingdom

E: info@lambdaphoto.co.uk
W: www.lambdaphoto.co.uk
T: +44 (0)1582 764334

Aug. 2019 RIGOL (SUZHOU) TECHNOLOGIES INC.

Guaranty and Declaration

Copyright

© 2019 **RIGOL** (SUZHOU) TECHNOLOGIES INC. All Rights Reserved.

Trademark Information

RIGOL is a registered trademark of **RIGOL** (SUZHOU) TECHNOLOGIES INC.

Publication Number

PVB12100-1110

Notices

- RIGOL products are covered by P.R.C. and foreign patents, issued and pending.
- **RIGOL** reserves the right to modify or change parts of or all the specifications and pricing policies at the company's sole decision.
- Information in this publication replaces all previously released materials.
- Information in this publication is subject to change without notice.
- RIGOL shall not be liable for either incidental or consequential losses in connection with the furnishing, use, or performance of this manual, as well as any information contained.
- Any part of this document is forbidden to be copied, photocopied, or rearranged without prior written approval of **RIGOL**.

Product Certification

RIGOL guarantees that this product conforms to the national and industrial standards in China as well as the ISO9001:2015 standard and the ISO14001:2015 standard. Other international standard conformance certifications are in progress.

Contact Us

If you have any problem or requirement when using our products or this manual, please contact **RIGOL**.

E-mail: service@rigol.com Website: www.rigol.com

General Safety Summary

Please review the following safety precautions carefully before putting the instrument into operation so as to avoid any personal injury or damage to the instrument and any product connected to it. To prevent potential hazards, please follow the instructions specified in this manual to use the instrument properly.

Use the BNC Output Connector Properly.

The BNC output connector on the front panel only allows to output the signal but not to input the signal.

Use Proper Power Cord.

Only the exclusive power cord designed for the instrument and authorized for use within the local country could be used.

Ground the Instrument.

The instrument is grounded through the Protective Earth lead of the power cord. To avoid electric shock, connect the earth terminal of the power cord to the Protective Earth terminal before connecting any input or output terminals.

Connect the Probe Correctly

If a probe is used, the probe ground lead must be connected to earth ground. Do not connect the ground lead to high voltage. Improper way of connection could result in dangerous voltages being present on the connectors, controls or other surfaces of the oscilloscope and probes, which will cause potential hazards for operators.

Observe All Terminal Ratings.

To avoid fire or shock hazard, observe all ratings and markers on the instrument and check your manual for more information about ratings before connecting the instrument.

Use Proper Overvoltage Protection.

Ensure that no overvoltage (such as that caused by a bolt of lightning) can reach the product. Otherwise, the operator might be exposed to the danger of an electric shock

Do Not Operate Without Covers.

Do not operate the instrument with covers or panels removed.

Do Not Insert Objects Into the Air Outlet.

Do not insert objects into the air outlet, as doing so may cause damage to the instrument.

Use Proper Fuse.

Please use the specified fuses.

Avoid Circuit or Wire Exposure.

Do not touch exposed junctions and components when the unit is powered on.

Do Not Operate With Suspected Failures.

If you suspect that any damage may occur to the instrument, have it inspected by **RIGOL** authorized personnel before further operations. Any maintenance, adjustment or replacement especially to circuits or accessories must be performed by **RIGOL** authorized personnel.

Provide Adequate Ventilation.

Inadequate ventilation may cause an increase of temperature in the instrument, which would cause damage to the instrument. So please keep the instrument well ventilated and inspect the air outlet and the fan regularly.

Do Not Operate in Wet Conditions.

To avoid short circuit inside the instrument or electric shock, never operate the instrument in a humid environment.

Do Not Operate in an Explosive Atmosphere.

To avoid personal injuries or damage to the instrument, never operate the instrument in an explosive atmosphere.

Keep Product Surfaces Clean and Dry.

To avoid dust or moisture from affecting the performance of the instrument, keep the surfaces of the instrument clean and dry.

Prevent Electrostatic Impact.

Operate the instrument in an electrostatic discharge protective environment to avoid damage induced by static discharges. Always ground both the internal and external conductors of cables to release static before making connections.

Use the Battery Properly.

Do not expose the battery (if available) to high temperature or fire. Keep it out of the reach of children. Improper change of a battery (lithium battery) may cause an explosion. Use the **RIGOL** specified battery only.

Handle with Caution.

Please handle with care during transportation to avoid damage to keys, knobs, interfaces, and other parts on the panels.

Document Overview

This manual is used to guide users to correctly test the performance specifications of DG2000 series function/arbitrary waveform generator. The performance verification test mainly verifies whether DG2000 series can work normally and is within specifications.

Main topics in this Manual:

Chapter 1 Test Overview

This chapter introduces the preparations before the performance verification test, the recommended test devices, the test result record, the test notices and the related information of the technical parameters.

Chapter 2 Performance Verification Test

This chapter introduces the test method, procedures and limits of each performance specification in details.

Appendix

The appendix provides the test results record forms and performance specifications of DG2000 series function/arbitrary waveform generator.

Format Conventions in this Manual:

1. Keys:

The keys on the front panel are usually denoted by the format of "Key Name (Bold) + Text Box". For example, **Pulse/Utility** denotes the Utility key.

2. Menu Labels:

The menu labels are usually denoted by the format of "Menu Word (Bold) + Character Shading". For example, **System Setting**.

3. Connectors:

The connectors on the front or rear panel are usually denoted by the format of "Connector Name (Bold) + Square Brackets (Bold)". For example, **[Counter]**.

4. Operation Procedures:

">" represents the next step of operation. For example, when the backlight of the **Shift** key is illuminated, pressing **Pulse/Utility System Setting** denotes that first press **Pulse/Utility** on the front panel, and then tap the **System Setting** menu label.

Content Conventions in this Manual:

DG2000 series function/arbitrary waveform generator includes the following models. Unless otherwise noted in this manual, DG2102 is taken as an example to illustrate the performance verification test methods of DG2000 series.

Model	No. of Channels	Max. Output Frequency
DG2052	2	50 MHz
DG2072	2	70 MHz
DG2102	2	100 MHz

Contents

Contents

Guaranty and Declaration	I
General Safety Summary	11
Document Overview	IV
Chapter 1 Test Overview	1-1
Test Preparations	1-1
Recommended Test Devices	1-1
Test Result Record	1-2
Test Notices	1-2
Technical Parameters	1-2
Chapter 2 Performance Verification Test	2-1
Frequency Accuracy Test	
Specification	
Test Procedures	
Test Record Form	
AC Amplitude Accuracy Test	
Specification	
Test Procedures	
Test Record Form	
DC Offset Accuracy Test	
Specification	
Test Procedures	
Test Record Form	
AC Flatness Test	
Specification	
Test Procedures	
Test Record Form	
Harmonic Distortion Test	
Specification	
Test Procedures	
Test Record Form	
Spurious Signal Test	
Specification	
Test Procedures	
Test Record Form	. 2-17
Rise/Fall Time Test	. 2-18
Specification	
Test Procedures	
Test Record Form	. 2-19
Overshoot Test	
Specification	. 2-20
Test Procedures	
Test Record Form	. 2-21

Contents RIGOL

Appendix		······································
Apper	dix A: Test Result Record Form	
Apper	dix B. Performance Specifications	1

Chapter 1 Test Overview

Test Preparations

Before performing the test, make sure that the instrument is within the calibration period (the recommended calibration period is 1 year) and has been warmed up for at least 30 minutes under the specified operation temperature (18° C to 28° C).

Recommended Test Devices

It is recommended that you use the test devices listed in the table below or other test devices whose performance specifications satisfy the "Performance Requirement" listed in the table below to test the performance specifications of the DG2000 series.

Table 1-1 Recommended test devices

Device	Performance Requirement	Recommended Instrument
Frequency Counter	>10MHz Accuracy: 0.1ppm	Keysight 53131A
Digital Multimeter	6 ¹ / ₂ digits	RIGOL DM3068
Power Meter	-30dBm to +20dBm Accuracy: ±0.02dB Resolution: 0.01dB	Keysight N1913A
Power Sensor	-30dBm to +20dBm	Keysight N8482A
Spectrum Analyzer	Minimum resolution bandwidth is 100Hz	RIGOL DSA815
Oscilloscope	Bandwidth: 500MHz Rise/Fall time measurement function Overshoot measurement function	RIGOL DS4052/DS4054
Power Sensor Connecting Cable	Used to connect the power meter and power sensor	
Connecting Cable	BNC (m)-BNC (m)	
Connecting Cable	BNC (m)-Dual banana plug (m)	
50Ω Load	50Ω/1W	
Adaptor	N (f)-BNC (m)	
Adaptor	BNC (f)-N (m)	

Test Result Record

Record and keep the test results of each test item. The test result record forms, which provide all the test items and the corresponding performance specification limits as well as spaces for users to record the test results, are provided in "Appendix A: Test Result Record Form" of this manual.

Tip:

It is recommended that you photocopy the test result record form before each test. During the test process, record the test results on the copies so that the forms can be used repeatedly.

Test Notices

To achieve optimum test effect, all the test procedures should follow the following recommendations.

- Make sure that the environment temperature is between 18℃ and 28℃ and every test is performed under the specified operation temperature (18℃ to 28℃).
- 2) Before performing each test, make sure that the instrument has been warmed up for at least 30 minutes.
- 3) Before performing each test, restore the instrument to factory setting.

Technical Parameters

Chapter 2 of this manual provides the corresponding specification of each test item. Besides, "**Appendix B: Performance Specifications**" provides the detailed performance specifications of DG2000 series.

Chapter 2 Performance Verification Test

This chapter introduces the performance verification test methods of DG2000 series function/arbitrary waveform generator by taking CH1 of DG2102 as an example. The test methods are also applicable to CH2.

The test items include:

- Frequency Accuracy Test
- AC Amplitude Accuracy Test
- DC Offset Accuracy Test
- AC Flatness Test
- Harmonic Distortion Test
- Spurious Signal Test
- Rise/Fall Time Test
- Overshoot Test

Frequency Accuracy Test

Specification

Frequency characte	eristic
Accuracy	\pm (1 ppm ^[1] of the setting value + 10 pHz), 18°C to 28°C

Note^[1]: ppm denotes one part per million. For example, if the setting frequency is 1MHz and the actual output frequency is between 0.999 998 999 999 999 99MHz and 1.000 001 000 000 000 01MHz, the instrument is up to the specification requirement and the test passes.

Test Procedures

1. Make sure that the environment temperature is between 18°C and 28°C and DG2000 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG2000 with the signal input terminal of the frequency counter using a dual-BNC cable as shown in Figure 2-1.

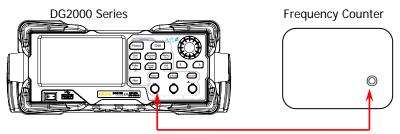


Figure 2-1 Connect DG2000 and the Frequency Counter

- 2. Turn on the frequency counter and set its output impedance to $1M\Omega$.
- 3. Turn on DG2000. When the **Shift** key is illuminated, press **Sine/Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG2000 to the factory setting.
- 4. Set DG2000:
 - a) Set the output waveform of CH1 to a sine waveform with 1MHz frequency and 1Vpp amplitude.
 - b) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 5. Record the reading of the frequency counter and judge whether the reading is between 0.999 998 999 999 999 99MHz and 1.000 001 000 000 01MHz.
- 6. Set CH1 of DG2000 to output square, ramp and pulse waveforms (the frequencies are 1MHz and the amplitudes are 1Vpp) respectively. Record the

- readings of the frequency counter respectively and judge whether the readings are between 0.999 998 999 999 999 99MHz and 1.000 001 000 000 000 01MHz.
- 7. Repeat steps 1 to 6 to test the frequency accuracy of CH2 and record the test results.

Waveform	Setting Value	Measurement Value	Specification	Pass/	Fail
Sine					
Square	Frequency: 1MHz		0.999 998 999 999 999		
Ramp	Amplitude: 1Vpp		99MHz to 1.000 001 000 000 000 01MHz		
Pulse					

AC Amplitude Accuracy Test

Specification

Output Characteristic	
Amplitude (into 50Ω)	
Accuracy	Typical (1kHz Sine, 0V Offset, >10mVpp, Auto) ±(1% of setting value) ±5mV

Test Procedures

1. Make sure that the environment temperature is between 18°C and 28°C and DG2000 has been warmed up for at least 30 minutes. Connect the 50Ω load to the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG2000; connect the 50Ω load and the voltage input terminals of the digital multimeter using a BNC-Dual banana plug connecting cable as shown in Figure 2-2.

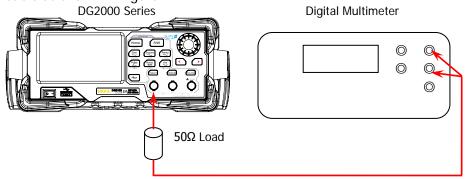


Figure 2-2 Connect DG2000 and the Digital Multimeter via a 50Ω Load

- 2. Turn on the multimeter, select the ACV measurement function and set the range to "Auto".
- 3. Turn on DG2000. When the **Shift** key is illuminated, press **Sine/Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG2000 to the factory setting.
- 4. Set DG2000:
 - a) Set the output impedance of CH1 to 50Ω . (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a sine waveform with 1kHz frequency, 20mVpp amplitude and $0V_{dc}$ offset.

- c) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 5. Record the reading of the multimeter and judge whether it is within the specification ("Amplitude Output Value (Vrms)" in Table 2-1) range.
- 6. Keep the output impedance of CH1 of DG2000 at 50Ω and the output waveform of CH1 as a sine waveform with 1kHz frequency and $0V_{dc}$ offset. Set the output amplitude of CH1 to 100mVpp, 500mVpp, 1Vpp, 5Vpp and 10Vpp respectively. Record the readings of the multimeter respectively and judge whether the readings are within the specification ("Amplitude Output Value (Vrms)" in Table 2-1) range.

Table 2-1 Amplitude output values (Vrms) of AC amplitude accuracy test

Amplitude Setting Value (Vpp)	Allowed Error (Vpp) ^[1]	Amplitude Output Value (Vpp)	Amplitude Output Value (Vrms) ^[2]
20mVpp	±5.2mVpp	14.8mVpp to 25.2mVpp	5.2mVrms to 8.9mVrms
100mVpp	±6mVpp	94mVpp to 106mVpp	33.2mVrms to 37.5mVrms
500mVpp	±10mVpp	490mVpp to 510mVpp	173.3mVrms to 180.3mVrms
1Vpp	±15mVpp	0.985Vpp to 1.015Vpp	348.3mVrms to 358.9mVrms
5Vpp	±55mVpp	4.945Vpp to 5.055Vpp	1.75Vrms to 1.7875Vrms
10Vpp	±105mVpp	9.895Vpp to 10.105Vpp	3.5Vrms to 3.5732Vrms

Note^[1]: "Allowed Error" is calculated from the specification "±(1% of setting value) ±5mVpp".

Note^[2]: "Amplitude Output Value (Vrms)" is calculated from "Amplitude Output Value (Vpp)".

The conversion relation between Vrms and Vpp is $Vpp = 2\sqrt{2}Vrms$.

7. Repeat Step 1-6 to test the AC amplitude accuracy of CH2 and record the test results.

Amplitude Setting Value	Setting	Measurement Value	Specification	Pass	/Fail
20mVpp			5.2mVrms to 8.9mVrms		
100mVpp	Frequency: 1kHz		33.2mVrms to 37.5mVrms		
500mVpp			173.3mVrms to 180.3mVrms		
1Vpp	Offset: 0V _{dc} Impedance:		348.3mVrms to 358.9mVrms		
5Vpp	50Ω		1.75Vrms to 1.7875Vrms		
10Vpp			3.5Vrms to 3.5732Vrms		

DC Offset Accuracy Test

Specification

Output Characteristic	
Offset (into 50Ω)	
Accuracy	±(1% of setting value + 5mV + 1% of amplitude)

Test Procedures

- 1. Make sure that the environment temperature is between 18°C and 28°C and DG2000 has been warmed up for at least 30 minutes. Connect the 50Ω load to the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG2000; connect the 50Ω load and the voltage input terminals of the digital multimeter using a BNC-Dual banana plug connecting cable as shown in Figure 2-2.
- 2. Turn on the multimeter, select the DCV measurement function and set the range to "20V".
- 3. Turn on DG2000. When the **Shift** key is illuminated, press **Sine/Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG2000 to the factory setting.
- 4. Set DG2000:
 - a) Set the output impedance of CH1 to 50Ω . (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a sine waveform with 1kHz frequency, 5Vpp amplitude and 0V_{dc} offset.
 - c) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 5. Record the reading of the multimeter and judge whether it is within the specification ("Offset" in Table 2-2) range.
- 6. Keep the output impedance of CH1 of DG2000 at 50Ω and the output waveform of CH1 as a sine waveform with 1kHz frequency and 5Vpp amplitude. Set the offset of the output waveform of CH1 to -2.5V_{dc}, -1V_{dc}, -500mV_{dc}, 500mV_{dc}, 1V_{dc} and 2.5V_{dc} respectively. Record the readings of the multimeter respectively and judge whether the readings are within the specification ("Offset" in Table 2-2) range.

Table 2-2 Offset limits of DC offset accuracy test

Offset Setting Value	Amplitude Setting Value	Allowed Error ^[1]	Offset ^[2]
-2.5V _{dc}		±0.080V _{dc}	-2.580V _{dc} to -2.420V _{dc}
-1V _{dc}		±0.065V _{dc}	-1.065V _{dc} to -0.935V _{dc}
-500mV _{dc}		±0.060V _{dc}	-0.560V _{dc} to -0.440V _{dc}
0V _{dc}	5Vpp	±0.055V _{dc}	-0.055V _{dc} to 0.055V _{dc}
500mV _{dc}		±0.060V _{dc}	0.440V _{dc} to 0.560V _{dc}
1V _{dc}		±0.065V _{dc}	0.935V _{dc} to 1.065V _{dc}
2.5V _{dc}		±0.080V _{dc}	2.420V _{dc} to 2.580V _{dc}

Note^[1]: "Allowed Error" is calculated from the specification "± (1% of setting value + 5 mV + 1% of amplitude)". Note^[2]: Offset = offset setting value \pm allowed error.

7. Repeat Step1-6 to test the DC offset accuracy of CH2 and record the test results.

Offset Setting Value	Setting	Measurement Value	Specification	Pass	/Fail
-2.5V _{dc}			-2.580V _{dc} to -2.420V _{dc}		
-1V _{dc}	Frequency:		-1.065V _{dc} to -0.935V _{dc}		
-500mV _{dc}	1kHz		-0.560V _{dc} to -0.440V _{dc}		
0V _{dc}	Amplitude: 5Vpp		-0.055V _{dc} to 0.055V _{dc}		
500mV _{dc}	Impedance:		0.440V _{dc} to 0.560V _{dc}		
1V _{dc}	50Ω		0.935V _{dc} to 1.065V _{dc}		
2.5V _{dc}			2.420V _{dc} to 2.580V _{dc}		

AC Flatness Test

Specification

Output Characteristic	
Flatness	Typical (Sine, 1 Vpp) ≤5 MHz: ±0.1 dB ≤15 MHz: ±0.2 dB ≤25 MHz: ±0.3 dB ≤40MHz: ±0.5 dB >40 MHz: ±1 dB

Test Procedures

- 1. Make sure that the environment temperature is between 18° C and 28° C and DG2000 has been warmed up for at least 30 minutes. Connect the 50Ω load to the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG2000; connect the 50Ω load and the voltage input terminals of the digital multimeter using a BNC-Dual banana plug connecting cable as shown in Figure 2-2.
- 2. Turn on DG2000. When the **Shift** key is illuminated, press **Sine/Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG2000 to the factory setting.
- 3. Set DG2000:
 - a) Set the output impedance of CH1 to 50Ω. (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** → **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω.)
 - b) Set the output waveform of CH1 to a sine waveform with 1kHz frequency and 1Vpp amplitude.
 - c) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 4. Turn on the multimeter and select the ACV measurement function. Turn on the dBm operation function and set the reference resistance to 50Ω . Read the measurement value and take it as the reference power (P_{ref}).

Tip:

In this step, if the dBm operation function is not turned on, you can also calculate the reference power using the formula

 $dBm = 10 \times Log_{10}[(V_{\text{reading}}^2 / R_{\text{ref}}) / 1mW]$ according to the measurement value of

the multimeter.

Wherein, $V_{\rm reading}$ is the measurement value of the multimeter.

- 5. Calibrate the power meter:
 - a) Connect the power sensor to the input terminal and **[POWER REF]** terminal of the power meter respectively.
 - b) Press **Zero/Cal** → **Zero** → **Cal**. Turn on **power reference** after the calibration finishes and observe whether the measurement value of the power meter is a OdBm, 50MHz signal.
 - c) Turn off **power reference**.
- 6. Disconnect DG2000 and the multimeter. Connect the power sensor and the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG2000 using a BNC (f)-N (m) adaptor, as shown in Figure 2-3.

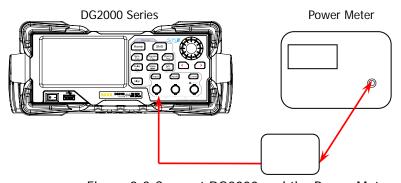


Figure 2-3 Connect DG2000 and the Power Meter

- 7. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 5MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 5MHz, record the measurement value of the power meter and judge whether "measurement value-P_{ref}" is between -0.1dB and +0.1dB.
- 8. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 10MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 10MHz, record the measurement value of the power meter and judge whether "measurement value-P_{ref}" is between -0.2dB and +0.2dB.
- 9. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 15MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 15MHz, record the measurement value of the power meter and judge whether "measurement value- P_{ref} " is between -0.2dB and +0.2dB.

- 10. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 20MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 20MHz, record the measurement value of the power meter and judge whether "measurement value- P_{ref} " is between -0.3dB and +0.3dB.
- 11. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 25MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 25MHz, record the measurement value of the power meter and judge whether "measurement value- P_{ref} " is between -0.3dB and +0.3dB.
- 12. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 30MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 30MHz, record the measurement value of the power meter and judge whether "measurement value- P_{ref} " is between -0.5dB and +0.5dB.
- 13. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 40MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 40MHz, record the measurement value of the power meter and judge whether "measurement value- P_{ref} " is between -0.5dB and +0.5dB.
- 14. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 50MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 50MHz, record the measurement value of the power meter and judge whether "measurement value- P_{ref} " is between -1dB and +1dB.
- 15. Repeat Step 1-14 to test the AC flatness of CH2 and record the test results.

Test Record Form

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/	Fail
5MHz				±0.1dB		
10MHz				±0.2dB		
15MHz	Amplitude: 1Vpp Impedance: 50Ω			±0.2dB		
20MHz				±0.3dB		
25MHz				±0.3dB		
30MHz				±0.5dB		
40MHz				±0.5dB		
50MHz				±1dB		

Note^[1]: Calculation result = Measurement value - P_{ref} .

Harmonic Distortion Test

Specification

Sine Wave Spectrum Purity				
	Typical ^[1]			
	DC to 10 MHz (included): <-55 dBc			
Harmonic Distortion	10 MHz to 20 MHz (included): <-50 dBc			
	20 MHz to 40 MHz (included): <-40 dBc			
	>40 MHz: <-35 dBc			

Note^[1]: 0 dBm output, DC offset 0, impedance 50 Ω .

Test Procedures

1. Make sure that the environment temperature is between 18°C and 28°C and DG2000 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG2000 with the signal input terminal of the spectrum analyzer using a dual-BNC connecting cable and N-BNC adaptor as shown in Figure 2-4.

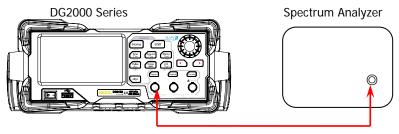


Figure 2-4 Connect DG2000 and the Spectrum Analyzer

- Turn on DG2000. When the Shift key is illuminated, press Sine/Preset and tap the Def icon, then a dialog box is displayed, tap "Apply" to restore DG2000 to the factory setting.
- 3. Set DG2000:
 - a) Set the output impedance of CH1 to 50Ω. (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** → **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω.)
 - b) Set the output waveform of CH1 to a sine waveform with 10MHz frequency, 0dBm amplitude and 0V_{dc} offset.
 - c) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.

- 4. Turn on and set the spectrum analyzer:
 - a) Set the reference level to 10dBm and input attenuation to 20dB.
 - b) Set the start frequency to 5MHz and stop frequency to 30MHz.
 - Set the resolution bandwidth to 3kHz.
- 5. Use the marker function to make measurements and record the measurement values of the base waveform and 2nd order harmonic. Calculate^[2] the harmonic distortion and judge whether it is less than -55dBc.
- 6. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 20MHz frequency, 0dBm amplitude and $0V_{dc}$ offset.
- 7. Keep the reference level, input attenuation and resolution bandwidth of the spectrum analyzer as 10dBm, 20dB and 3kHz respectively. Set its start frequency to 10MHz and stop frequency to 60MHz.
- 8. Use the marker function to make measurements and record the measurement values of the base waveform and 2nd order harmonic. Calculate^[2] the harmonic distortion and judge whether it is less than -50dBc.
- 9. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 40MHz frequency, 0dBm amplitude and $0V_{dc}$ offset.
- 10. Keep the input attenuation, reference level and resolution bandwidth of the spectrum analyzer as 20dB, 10dBm and 3kHz respectively. Set its start frequency to 30MHz and stop frequency to 130MHz.
- 11. Use the marker function to make measurements and record the measurement values of the base waveform and 2nd order harmonic. Calculate^[2] the harmonic distortion and judge whether it is less than -40dBc.
- 12. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 60MHz frequency, 0dBm amplitude and $0V_{dc}$ offset.
- 13. Keep the input attenuation, reference level and resolution bandwidth of the spectrum analyzer as 20dB, 10dBm and 3kHz respectively. Set its start frequency to 50MHz and stop frequency to 150MHz.
- 14. Use the marker function to make measurements and record the measurement values of the base waveform and 2nd order harmonic. Calculate^[2] the harmonic distortion and judge whether it is less than -35dBc.
- 15. Repeat Step 1-14 to test the harmonic distortion of CH2 and record the test

results.

Note^[2]: 2nd order harmonic distortion = 2nd order harmonic measurement value – base waveform measurement value

For example, when the output waveform frequency of the channel is 10MHz, if the base waveform measurement value is 0.8dBm and the 2nd order harmonic measurement value is -56.2dBm, the 2nd order harmonic distortion = (-56.2) -0.8=-57dBc<-55dBc and the test result fulfills the specification requirement.

Test Record Form

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[3]	Specification	Pass/	Fail
10MHz		Base waveform: 2 nd order harmonic:		<-55dBc		
20MHz	Waveform: Sine Amplitude:	Base waveform: 2 nd order harmonic:		<-50dBc		
40MHz	OdBm Offset: 0V _{dc}	Base waveform: 2 nd order harmonic:		<-40dBc		
60MHz		Base waveform: 2 nd order harmonic:		<-35dBc		

Note^[3]: Calculation result = 2th order harmonic measurement value - base waveform measurement value.

Spurious Signal Test

Specification

Sine Wave Spectrum Purity				
Spurious signal (non-harmonic)	Typical ^[1] ≤10 MHz: <-60 dBc >10 MHz: <-60 dBc + 6 dB/octave ^[2]			

Note^[1]: 0 dBm output, DC offset 0, impedance 50 Ω .

Note^[11]: 6 dBc/octave means that when the frequency doubles, the specification increases by 6 dBc. For example, when the output frequency of DG2000 is 10MHz, the specification is <-60dBc and when the output frequency is 30MHz, the specification is <-60dBc+2×6dBc, namely <-48dBc.

Test Procedures

- 1. Make sure that the environment temperature is between 18℃ and 28℃ and DG2000 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG2000 with the RF input terminal of the spectrum analyzer using a dual-BNC cable and N-BNC adaptor as shown in Figure 2-4.
- 2. Turn on DG2000. When the **Shift** key is illuminated, press **Sine/Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG2000 to the factory setting.
- 3. Set DG2000:
 - a) Set the output impedance of CH1 to 50Ω . (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a sine waveform with 5MHz frequency, 0dBm amplitude and $0V_{dc}$ offset.
 - d) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 4. Turn on and set the spectrum analyzer:
 - a) Set the reference level to 10dBm and input attenuation to 20dB.
 - b) Set the start frequency to OHz and stop frequency to 30MHz.
 - c) Set the resolution bandwidth to 1kHz.
 - d) Set the peak offset to 3dB.
 - e) Set the sweep mode to single.
- 5. After the spectrum analyzer finishes a sweep, use **Peak** and the marker function to measure the maximum spurious signal (except harmonics) and

- record the measurement result as **A**. Calculate the non-harmonic spurious signal (**A**-0dBm) and judge whether it is within the specification range.
- 6. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 10MHz frequency, 0dBm amplitude and 0V_{dc} offset.
- 7. Keep the reference level, input attenuation, resolution bandwidth, peak offset and sweep mode of the spectrum analyzer as 10dBm, 20dB, 1kHz, 3dB and single respectively. Set its start frequency to 0Hz and stop frequency to 50MHz.
- 8. Press **Sweep/Trig** → **Single** to perform a sweep.
- 9. After the spectrum analyzer finishes a sweep, use **Peak** and the marker function to measure the maximum spurious signal (except harmonics) and record the measurement result as **A**. Calculate the non-harmonic spurious signal (**A**-0dBm) and judge whether it is within the specification range.
- 10. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 20MHz frequency, 0dBm amplitude and 0V_{dc} offset.
- 11. Keep the reference level, input attenuation, resolution bandwidth, peak offset and sweep mode of the spectrum analyzer as 10dBm, 20dB, 1kHz, 3dB and single respectively. Set its start frequency to 0Hz and stop frequency to 100MHz.
- 12. Repeat Step 8 and 9.
- 13. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 30MHz frequency, 0dBm amplitude and $0V_{dc}$ offset.
- 14. Keep the reference level, input attenuation, resolution bandwidth, peak offset and sweep mode of the spectrum analyzer as 10dBm, 20dB, 1kHz, 3dB and single respectively. Set its start frequency to 0Hz and stop frequency to 150MHz.
- 15. Repeat Step 8 and 9.
- 16. Keep the output impedance of CH1 of DG2000 at 50Ω . Set the output waveform of CH1 as a sine waveform with 60MHz frequency, 0dBm amplitude and 0V_{dc} offset.
- 17. Keep the reference level, input attenuation, resolution bandwidth, peak offset and sweep mode of the spectrum analyzer as 10dBm, 20dB, 1kHz, 3dB and single respectively. Set its start frequency to 0Hz and stop frequency to 300MHz.

- 18. Repeat Step 8 and 9.
- 19. Repeat Step 1-18 to test the spurious signal (non-harmonic) of CH2 and record the test results.

Output Frequency	Start Frequency	Stop Frequency	A	A-0dBm	Specification	Pass/	Fail
5MHz	0Hz	30MHz			<-60dBc		
10MHz	0Hz	50MHz			<-60dBc		
20MHz	0Hz	100MHz			<-54dBc		
30MHz	0Hz	150MHz			<-48dBc		
60MHz	0Hz	300MHz			<-30dBc		

Rise/Fall Time Test

Specification

Signal Characteristic				
Square				
Rise/Fall Time	Typical (1 Vpp, 1 kHz) ≤9 ns			

Test Procedures

1. Make sure that the environment temperature is between 18℃ and 28℃ and DG2000 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG2000 with the signal input terminal of the oscilloscope using a dual-BNC connecting cable as shown in Figure 2-5.

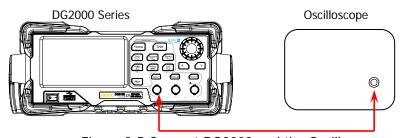


Figure 2-5 Connect DG2000 and the Oscilloscope

- 2. Turn on DG2000. When the **Shift** key is illuminated, press **Sine/Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG2000 to the factory setting.
- 3. Set DG2000:
 - a) Set the output impedance of CH1 to 50Ω . (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a square waveform with 1kHz frequency, 1Vpp amplitude and $0V_{dc}$ offset.
 - c) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 4. Turn on and set the oscilloscope:
 - a) Set the vertical scale to 200mV/div.

- b) Set the horizontal time base to 1us.
- c) Adjust the trigger level to a proper value.
- d) Set the input impedance to 50Ω .
- e) Turn on the rise time and fall time measurement functions.
- 5. Set the edge type of the oscilloscope to rising edge, record the measurement result of the rise time and judge whether it is within the specification range.
- 6. Set the edge type of the oscilloscope to falling edge, record the measurement result of the fall time and judge whether it is within the specification range.
- 7. Repeat Step 1-6 to test the rise/fall time of CH2 and record the measurement results.

Waveform	Setting	Measurement Value	Specification	Pass/Fail
Carro	Frequency: 1kHz	Rise Time	Typical (1 Vpp, 1	
Square	Amplitude: 1Vpp Offset: 0V _{dc}	Fall Time	Hz) ≤9 ns	

Overshoot Test

Specification

Signal Characteristic				
Square	Square			
Overshoot	Typical (100kHz, 1Vpp) ≤5%			

Test Procedures

- 1. Make sure that the environment temperature is between 18℃ and 28℃ and DG2000 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG2000 with the signal input terminal of the oscilloscope using a dual-BNC connecting cable as shown in Figure 2-5.
- 2. Turn on DG2000. When the **Shift** key is illuminated, press **Sine/Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG2000 to the factory setting.
- 3. Set DG2000:
 - a) Set the output impedance of CH1 to 50Ω . (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a square waveform with 100kHz frequency, 1Vpp amplitude and $0V_{dc}$ offset.
 - c) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 4. Turn on and set the oscilloscope:
 - a) Set the input impedance to 50Ω .
 - b) Set the vertical scale to 200mV/div.
 - c) Set the horizontal time base to 50ns.
 - d) Adjust the trigger level to a proper value.
 - e) Turn on the overshoot measurement function.
- 5. Record the overshoot measurement value and judge whether it is within the specification range.
- 6. Repeat Step 1-5 to test the overshoot of CH2 and record the measurement result.

Waveform	Setting	Measurement Value	Specification	Pass/Fail
Square	Frequency: 100kHz Amplitude: 1Vpp Offset: 0V _{dc}		Typical (100kHz, 1Vpp) ≤5%	

Appendix RIGOL

Appendix

Appendix A: Test Result Record Form

RIGOL DG2000 Series Function/Arbitrary Waveform Generator Performance Verification Test Record Form

Model:		Tested by:	Test Date:				
Channel: CH	11						
Frequency Accuracy Test							
Waveform	Setting Value	Measurement Value	Specification F		Pass/Fail		
Sine							
Square	Frequency: 1MHz		0.999 998 999 999 999				
Ramp	Amplitude: 1Vpp		99MHz to 1.000 001 000 000 000 01MHz				
Pulse							

AC Amplitude Accuracy Test

Amplitude Setting Value	Setting	Measurement Value	Specification	Pass/Fail	
20mVpp			5.2mVrms to 8.9mVrms		
100mVpp	Frequency: 1kHz Offset: 0V _{dc} Impedance: 50Ω		33.2mVrms to 37.5mVrms		
500mVpp			173.3mVrms to 180.3mVrms		
1Vpp			348.3mVrms to 358.9mVrms		
5Vpp			1.75Vrms to 1.7875Vrms		
10Vpp			3.5Vrms to 3.5732Vrms		

RIGOL Appendix

DC Offset Accuracy Test

Offset Setting Value	Setting	Measurement Value	Specification Pa		Pass/Fail	
-2.5V _{dc}			-2.580V _{dc} to -2.420V _{dc}			
-1V _{dc}	Frequency:		-1.065V _{dc} to -0.935V _{dc}			
-500mV _{dc}	1kHz		-0.560V _{dc} to -0.440V _{dc}			
0V _{dc}	Amplitude: 5Vpp		-0.055V _{dc} to 0.055V _{dc}			
500mV _{dc}	Impedance: 50Ω		0.440V _{dc} to 0.560V _{dc}			
1V _{dc}			0.935V _{dc} to 1.065V _{dc}			
2.5V _{dc}			2.420V _{dc} to 2.580V _{dc}			

AC Flatness Test

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/Fail	
5MHz	- Amplitude: . 1Vpp Impedance: . 50Ω			±0.1dB		
10MHz				±0.2dB		
15MHz				±0.2dB		
20MHz				±0.3dB		
25MHz				±0.3dB		
30MHz				±0.5dB		
40MHz				±0.5dB		
50MHz				±1dB		

Note^[1]: Calculation result = Measurement value - P_{ref} .

Harmonic Distortion Test

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/	Fail
10MHz		Base waveform: 2 nd order		<-55dBc		
		harmonic:				
001411	Waveform: Sine Amplitude: OdBm Offset: 0V _{dc}	Base waveform:		50 10		
20MHz		2 nd order harmonic:		<-50dBc		
		Base waveform:				
40MHz		2 nd order harmonic:		<-40dBc		
60MHz ^[2]		Base waveform:				
		2 nd order harmonic:		<-35dBc		

Note^[1]: Calculation result = 2th order harmonic measurement value - base waveform measurement value. Note^[2]: Only applicable to DG2102 and DG2072.

Spurious Signal Test

Spullous Signal Test								
Output Frequency	Start Frequency	Stop Frequency	A	A-0dBm	Specification	Pass/	Fail	
5MHz	0Hz	30MHz			<-60dBc			
10MHz	0Hz	50MHz			<-60dBc			
20MHz	0Hz	100MHz			<-54dBc			
30MHz	0Hz	150MHz			<-48dBc			
60MHz ^[1]	0Hz	300MHz			<-30dBc			

Note^[1]: Only applicable to DG2102 and DG2072.

Rise/Fall Time Test

Waveform	Setting	Measurement Value		Specification	Pass/Fail	
Carro	Frequency: 1kHz	Rise Time		Typical (1 Vpp, 1		
Square	Amplitude: 1Vpp Offset: 0V _{dc}	Fall Time		kHz) ≤9 ns		

Overshoot Test

Waveform	Setting	Measurement Value	Specification	Pass/Fail
Square	Frequency: 100kHz Amplitude: 1Vpp Offset: 0V _{dc}		Typical (100kHz, 1Vpp) ≤5%	

Channel: CH2

Frequency Accuracy Test

Waveform	Setting Value	Measurement Value	Specification	Pass/Fail	
Sine					
Square	Frequency: 1MHz		0.999 998 999 999 999		
Ramp	Amplitude: 1Vpp		99MHz to 1.000 001 000 000 000 01MHz		
Pulse	1 11				

AC Amplitude Accuracy Test

Amplitude Setting Value	Setting	Measurement Value	Specification	Pass/Fail	
20mVpp			5.2mVrms to 8.9mVrms		
100mVpp	Frequency:		33.2mVrms to 37.5mVrms		
500mVpp	1kHz		173.3mVrms to 180.3mVrms		
1Vpp	Offset: 0V _{dc} Impedance:		348.3mVrms to 358.9mVrms		
5Vpp	50Ω		1.75Vrms to 1.7875Vrms		
10Vpp			3.5Vrms to 3.5732Vrms		

DC Offset Accuracy Test

Offset Setting Value	Setting	Measurement Value	Specification	Pass/	/Fail
-2.5V _{dc}			-2.580V _{dc} to -2.420V _{dc}		
-1V _{dc}	Frequency: 1kHz		-1.065V _{dc} to -0.935V _{dc}		
-500mV _{dc}			-0.560V _{dc} to -0.440V _{dc}		
0V _{dc}	Amplitude: 5Vpp		-0.055V _{dc} to 0.055V _{dc}		
500mV _{dc}	Impedance:		0.440V _{dc} to 0.560V _{dc}		
1V _{dc}	50Ω		0.935V _{dc} to 1.065V _{dc}		
2.5V _{dc}			2.420V _{dc} to 2.580V _{dc}		

AC Flatness Test

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/	Fail
5MHz				±0.1dB		
10MHz				±0.2dB		
15MHz				±0.2dB		
20MHz	Amplitude: 1Vpp			±0.3dB		
25MHz	Impedance:			±0.3dB		
30MHz	50Ω			±0.5dB		
40MHz				±0.5dB		
50MHz				±1dB		

Note^[1]: Calculation result = Measurement value - P_{ref}.

Harmonic Distortion Test

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/I	Fail
10MHz	DMHz	Base waveform: 2 nd order harmonic:		<-55dBc		
20MHz	Waveform: Sine Amplitude:	Base waveform: 2 nd order harmonic:		<-50dBc		
40MHz	OdBm Offset: 0V _{dc}	Base waveform: 2 nd order harmonic:		<-40dBc		
60MHz ^[2]		Base waveform: 2 nd order harmonic:		<-35dBc		

Note^[1]: Calculation result = 2th order harmonic measurement value - base waveform measurement value. Note^[2]: Only applicable to DG2102 and DG2072.

Spurious Signal Test

Output Frequency	Start Frequency	Stop Frequency	A	A-0dBm	Specification	Pass/	Fail
5MHz	0Hz	30MHz			<-60dBc		
10MHz	0Hz	50MHz			<-60dBc		
20MHz	0Hz	100MHz			<-54dBc		
30MHz	0Hz	150MHz			<-48dBc		
60MHz ^[1]	0Hz	300MHz			<-30dBc		

Note^[1]: Only applicable to DG2102 and DG2072.

Rise/Fall Time Test

Waveform	Setting	Measurement Value		Specification	Pass	/Fail
Course	Frequency: 1kHz	Rise Time		Typical (1 Vpp, 1		
Square	Amplitude: 1Vpp Offset: 0V _{dc}	Fall Time		kHz) ≤9 ns		

Overshoot Test

Waveform	Setting	Measurement Value	Specification	Pass/Fail
Square	Frequency: 100kHz Amplitude: 1Vpp Offset: 0V _{dc}		Typical (100kHz, 1Vpp) ≤5%	

Appendix B: Performance Specifications

Unless otherwise specified, all the specifications can be guaranteed when the following two conditions are met.

- The signal generator is within the calibration period.
- The signal generator has been running ceaselessly for over 30 minutes under the specified operating temperature (23°C±5°C).

All the specifications are guaranteed except the parameters marked with "Typical".

Model	DG2052	DG2072	DG2102
Channel	2	2	2
Max. Frequency	50 MHz	70 MHz	100 MHz
Sample Rate	250 MSa/s		
Waveform			
Basic Waveforms	Sine, Square, Ramp, Pu	lse, Noise, DC, Dual-ton	e
Advanced	PRBS, RS232, Sequence	7	
Waveforms	·		
Built-in Arbitrary		, including Sinc, Expone	ential Rise, Exponential
Waveforms	Fall, ECG, Gauss, Haver	Sine, Lorentz, etc.	
Fraguanay Charact	oristics		
Frequency Charact Sine	1 µHz to 50 MHz	1 μHz to 70 MHz	1 μHz to 100 MHz
Square	1 μHz to 15 MHz	1 µHz to 20 MHz	1 μHz to 25 MHz
•			
Ramp	1 μHz to 1.5 MHz	1 μHz to 1.5 MHz	1 μHz to 2 MHz
Pulse	1 μHz to 15 MHz	1 μHz to 20 MHz	1 µHz to 25 MHz
Harmonic	1 μHz to 20 MHz	1 μHz to 20 MHz	1 μHz to 25 MHz
PRBS	2 kbps to 40 Mbps	2 kbps to 50 Mbps	2 kbps to 60 Mbps
Dual-tone	1 μHz to 20 MHz	1 μHz to 20 MHz	1 μHz to 20 MHz
RS232	baud rate range: 9600, 14400, 19200, 38400, 57600, 115200, 128000, 230400		
Sequence	2 k to 60 MSa/s		
Noise (-3 dB)	100 MHz bandwidth		
Arbitrary Waveform	1 μHz to 15 MHz	1 μHz to 20 MHz	1 μHz to 20 MHz
Resolution	1 μHz		
Accuracy	±(1 ppm of the setting value + 10 pHz), 18°C to 28°C		
Sine Wave Spectru	m Purity		
	Typical ^[1]		
	DC to 10 MHz (included): <-55 dBc		
Harmonic Distortion	10 MHz to 20 MHz (included): <-50 dBc		
	20 MHz to 40 MHz (included): <-40 dBc		
	>40 MHz: <-35 dBc		
Total Harmonic Distortion ^[1]	<0.075% (10 Hz to 20 kHz)		
Spurious	Typical ^[1]		
(non-harmonic)	≤10 MHz: <-60 dBc		
	>10 MHz: <-60 dBc + 6 dB/octave		
Phase Noise	Typical (0 dBm, 10 kHz offset)		

	10 MHz: <-105 dBc/Hz	
0. 10		
Signal Characterist	ics	
Square		
Rise/Fall Time	Typical (1 Vpp, 1 kHz) ≤9 ns	
Overshoot	Typical (100 kHz, 1 Vpp) ≤5%	
Duty	0.01% to 99.99% (limited by the current frequency setting)	
Non-symmetry	1% of the period + 4 ns	
Jitter (rms)	Typical (1 Vpp) ≤5 MHz: 2 ppm of the period + 200 ps >5 MHz: 200 ps	
Ramp		
Linearity	≤1% of peak output (typical, 1 kHz, 1 VPP, 100% symmetry)	
Symmetry	0% to 100%	
Pulse		
Pulse	16 ns to 1000 ks (limited by the current frequency setting)	
Duty	0.001% to 99.999% (limited by the current frequency setting)	
Rising/Falling Edge	≥8 ns (limited by the current frequency setting and pulse width setting)	
	Typical (1 Vpp, 1 kHz)	
Overshoot	≤5%	
	Typical (1 Vpp)	
Jitter (rms)	≤5 MHz: 2 ppm of the period + 200 ps	
	>5 MHz: 200 ps	
Arbitrary Waveforn	n Sequence	
Waveform Length	16 Mpts	
Vertical Resolution	16 bits	
	Interpolation filter: 10 Sa/s to 60 MSa/s	
Sample Rate	Step filter: 2k Sa/s to 50 MSa/s	
	Smooth filter: 2k Sa/s to 50 MSa/s	
	Interpolation filter: ≥8 ns	
Min Rise/Fall Time	Step filter: 3.0/sample rate	
	Smooth filter: 1.0/sample rate	
	Typical (1 Vpp)	
Jitter (rms)	Interpolation filter: 200 ps	
	Step filter: <5 ps	
	Smooth filter: <5 ps	
Overshoot	Typical (1 Vpp) ≤5%	
Harmonic Output		
Harmonic Order	≤8	
Harmonic Type	Even Harmonic, Odd Harmonic, Order Harmonic, User	
Harmonic Amplitude	The amplitude of each order of the harmonic can be set.	
Harmonic Phase	The phase of each order of harmonic can be set.	
	•	
Output Characteris	tics	
Amplitude (into 50 Ω)		
, , , , , , , , , , , , , , , , , , , ,	≤10 MHz: 1.0 mVpp to 10 Vpp	
Damas	≤30 MHz: 1.0 mVpp to 5.0 Vpp	
Range	≤60 MHz: 1.0 mVpp to 2.5 Vpp	
	200 Piliz. 1.0 Hivpp to 2.5 vpp	

-			
Accuracy	Typical (1 kHz sine, 0 V offset, >10 mVpp, auto)		
,	±(1% of the setting value) ± 5 mV		
Flatness	Typical (Sine, 1 Vpp)		
	≤5 MHz: ±0.1 dB		
	≤15 MHz: ±0.2 dB		
	≤25 MHz: ±0.3 dB		
	≤40MHz: ±0.5 dB		
	>40 MHz: ±1 dB		
Unit	Vpp, Vrms, dBm		
Resolution	0.1 mVpp or 4 digits		
Offset (into 50 Ω)	T		
Range (Peak ac+dc)	±5 Vpk ac+dc		
Accuracy	\pm (1% of the setting value + 5 mV + 1% of the amplitude)		
Waveform Output	,		
Output Impedance	50 Ω (typical)		
Protection	Short-circuit protection, automatically disable the waveform output		
FIOLECTION	when overload occurs		
Modulation Charac			
Modulation Type	AM, FM, PM, ASK, FSK, PSK, PWM		
AM	Circ. Courses Double Add		
Carrier Waveform	Sine, Square, Ramp, Arb		
Source	Internal/External		
Modulating	Sine, Square, Ramp, Noise, Arb		
Waveform	· · ·		
Modulation Depth	0% to 120%		
Modulation	2 mHz to 1 MHz		
Frequency			
FM			
Carrier Waveform	Sine, Square, Ramp, Arb		
Source	Internal/External		
Modulating	Sine, Square, Ramp, Noise, Arb		
Waveform	Sinc, Square, Ramp, Noise, Arb		
Modulation	2 mHz to 1 MHz		
Frequency	Z THILE GO T WHILE		
PM			
Carrier Waveform	Sine, Square, Ramp, Arb		
Source	Internal/External		
Modulating	Sine, Square, Ramp, Noise, Arb		
Waveform	' '		
Phase Deviation	0° to 360°		
Modulation	2 mHz to 1 MHz		
Frequency	Z TITLE TO T WILL		
ASK	T		
Carrier Waveform	Sine, Square, Ramp, Arb		
Source	Internal/External		
Modulating	Square with 50% duty cycle		
Waveform			
Key Frequency	2 mHz to 1 MHz		
FSK			
Carrier Waveform	Sine, Square, Ramp, Arb		
Source	Internal/External		
	•		

Madulatina			
Modulating Waveform	Square with 50% duty cycle		
Key Frequency	2 mHz to 1 MHz		
PSK	Z THINZ TO T IMINZ		
Carrier Waveform	Sine, Square, Ramp, Arb		
Source	Internal/External		
Modulating			
Waveform	Square with 50% duty cycle		
Key Frequency	2 mHz to 1 MHz		
PWM			
Carrier Waveform	Pulse		
Source	Internal/External		
Modulating	Sino Squaro Damp Noice Arh		
Waveform	Sine, Square, Ramp, Noise, Arb		
Width Deviation	0% to 100% of the pulse width		
Modulation	2 mHz to 1 MHz		
Frequency	2 mHz to 1 MHz		
External Modulation	on Input		
Input Pango	AM, PM, FM: 75 mVRMS to ±5 (Vac+dc)		
Input Range	ASK, PSK, FSK: standard 5 V TTL		
Input Bandwidth	50 kHz		
Input Impedance	10 kΩ		
Burst Characterist	ics		
Carrier Waveform	Sine, Square, Ramp, Pulse, Noise, Arb, PRBS, RS232, Sequence (except DC, dual-tone, and Harmonic)		
Carrier Frequency	2 mHz to 50 MHz 2 mHz to 70 MHz 2 mHz to 100 MHz		
Burst Count	1 to 1,000,000 or Infinite		
Internal Period	1 μs to 500 s		
Gated Source	External Trigger		
Source	Internal, External, Manual		
Trigger Delay	0 ns to 100 s		
Sweep Characteris	tics		
Carrier Waveform	Sine, Square, Ramp, Arb		
Туре	Linear, Log, and Step		
Orientation	Up/Down		
Start/Stop			
Frequency	Same as the upper/lower limit of the corresponding carrier frequency		
Sweep Time	1 ms to 500 s		
Hold/Return Time	0 ms to 500 s		
Source	Internal, External, Manual		
Marker	Falling edge of the sync signal (programmable)		
Frequency Counter	r		
Measurement Function	Frequency, Period, Positive/Negative Pulse Width, Duty Cycle		
Frequency Resolution	7 digits/s (Gate Time = 1 s)		
Frequency Range	1 μHz to 240 MHz		

Period Measurement	Measurement Range	4 ns to 1,000 ks	
Voltage Range and	Voltage Range and Sensitivity (non-modulating signal)		
DC Coupling	DC Offset Range	±1.5 Vdc	
	1 μHz to 100 MHz	50 mVRMS to ±2.5 (Vac+dc)	
	100 MHz to 240 MHz	100 mVRMS to ±2.5 (Vac+dc)	
AC Coupling	1 μHz to 100 MHz	50 mVRMS to ±2.5 Vpp	
	100 MHz to 240 MHz	100 mVRMS to ±2.5 Vpp	
Pulse Width and D	uty Cycle Measuremer	nt	
Frequency and Amplitude Ranges	1 μHz to 25 MHz	50 mVRMS to ±2.5 (Vac+dc)	
	Min. Pulse Width	≥20 ns	
Pulse Width	Pulse Width Resolution	5 ns	DC Coupling
Duty	Measurement Range (display)	0% to 100%	
Input Characterist	ics		
Input Signal Range	Breakdown Voltage	±7 (Vac+dc)	Input Impedance = 1 MΩ
	Coupling Mode	AC	DC
Input Adjustment	High Frequency Rejection	On: Input Bandwidth = 150 kHz; Off: Input Bandwidth = 240 MHz	
	Trigger Level Range	-2.5 V to +2.5 V	
Input Trigger	Trigger Sensitivity Range	High, Low	
	1 ms	1.048 ms	
	10 ms	8.389 ms	
GateTime	100 ms	134.218 ms	
Gaterime	1 s	1.074 s	
	10 s	8.590 s	
	>10 s	>8.590 s	
Trimmer Characteri	-4:a-		
Trigger Characteristics Trig Input			
Level	TTL-compatible		
Slope	Rising or falling (selectable)		
Pulse Width	>100 ns		
Latency	Sweep: <100 ns (typical) Burst: <350 ns (typical)		
Trigger Output			

Level	TTL-compatible		
Pulse Width	>60 ns (typical)		
Max. Frequency	1 MHz		
Two-channel Char	Two-channel Characteristics - Phase Offset		
Range	0° to 360°		
Waveform Phase Resolution	0.03°		
Reference Clock			
External Reference	e Input		
Lock Range	10 MHz ± 50 Hz		
Level	250 mVpp to 5 Vpp		
Lock Time	<2 s		
Input Impedance	1 kΩ, AC coupling		
(Typical)	1 K2, AC coupling		
Internal Reference	e Output		
Frequency	10 MHz ± 50 Hz		
Level	3.3 Vpp		
Output Impedance (Typical)	50 Ω, AC coupling		
Synchronous Output			
Level	TTL-compatible		
Impedance	50 Ω, nominal value		

Overvoltage Protection

Occurred when:

- The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than $|1.6 \text{ V}_{DC}|$ and the input voltage is greater than $\pm 12 \times (1 \pm 5\%)\text{V}$ (<10 kHz). Disruptive discharge voltage: $\pm 18 \text{(Vac + dc)}$.
- The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than $|1.6 \text{ V}_{DC}|$ and the input voltage is greater than $\pm 2.6 \times (1 \pm 5\%)\text{V}$ (<10 kHz). Disruptive discharge voltage: $\pm 5(\text{Vac} + \text{dc})$.

Overcurrent Protection		
Occurred when: the current is greater than ±240 mA.		
Programming Time		
Configuration	USB	
Changes		
Function Change	10 ms	
Amplitude Change	5 ms	
Frequency Change	5 ms	
General Specifications		
Power Supply		
Power Voltage	100 V to 127 V (45 Hz to 440 Hz)	
	100 V to 240 V (45 Hz to 65Hz)	
Power Consumption	Lower than 30 W	
Display		

_	40: 1 757 100 1		
Type	4.3-inch TFT LCD touch scree		
Resolution Color	480 horizontal × RGB × 272 v	vertical resolution	
Environment	16 M		
LIIVII OIIIIIEII	Operating: 0°C to 45°C		
Temperature Range	, ,		
	Non-operating: -40°C to 60°C		
Cooling Method	Natural air cooling		
	Below 30°C: ≤95%RH		
Humidity Range	30°C to 40°C: ≤75%RH		
	40°C to 50°C: ≤45%RH		
Altitude	Operating: below 3,000 mete		
	Non-operating: below 15,000	meters	
Mechanical Charac	teristics		
Dimensions (W×H×D)	261.5 mm × 112 mm × 318.4 mm		
Weight	Package excluded: 3.2 kg Package included: 4.5 kg		
Interface	USB Host, USB Device, and USB-GPIB		
IP Protection	IP2X		
Calibration Interval	1 year (recommended)		
Certification Inform	nation		
	Compliant with EN61326-1:2006		
	IEC 61000-3-2:2000	±4.0 kV (Contact Discharge) ±4.0 kV (Air Discharge)	
	IEC 61000-4-3:2002	3 V/m (80 MHz to 1 GHz); 3 V/m (1.4 GHz to 2 GHz); 1 V/m (2.0 GHz to 2.7 GHz)	
	IEC 61000-4-4:2004	1kV power line	
ЕМС	IEC 61000-4-5:2001	0.5 kV (phase-to-neutral voltage); 0.5 kV (phase-to-earth voltage); 1 kV (neutral-to-earth voltage)	
	IEC 61000-4-6:2003	3 V, 0.15 MHz to 80 MHz	
	IEC 61000-4-11:2004	Voltage dip: 0% UT during half cycle 0% UT during 1 cycle 70% UT during 25 cycles Short interruption: 0% UT during 1 cycle	
Electrical Safety	complies with USA: UL 61010-1:2012, Canada: CAN/CSA-C22.2 No. 61010-1-2012 EN 61010-1:2010,		

Note^[1]: 0 dBm output, DC offset 0, impedance 50 Ω .