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A B S T R A C T

Addressed herein, functionalized multi-walled carbon nanotube (MWCNT) supported highly monodisperse
nickel nanoparticles modified on glassy carbon electrode (Ni@f-MWCNT/GCE) were synthesized through
microwave assisted method and examined for non-enzymatic glucose sensing in ionic liquids by cyclic
voltammetry and chronoamperometry. The results of Ni@f-MWCNT/GCE electrode were compared with Ni
NPs/GCE electrode and the results revealed that f-MWCNTs increased the electrocatalytic properties of Ni
nanoparticles regarding glucose oxidation. They also demonstrated a good linear span of 0.05–12.0 mM and a
detection boundary of 0.021 µM. Specifically, in the amperometric signal of the electrodes after 200th cycles, no
major change was observed. This non-enzymatic glucose sensor presents one of the record electrocatalytic
activity, stability and response towards glucose under the optimized situations. As a result, prepared novel Ni@
f-MWCNT/GCE was utilized to detect glucose in real serum species.

1. Introduction

Diabetes is a chronic disease caused by increased of blood glucose
levels and takes place at the beginning of a major health problem in the
worldwide (Fu et al., 2015; Choi et al., 2015). Since 1960, advancement
of recognizing small molecules via electrochemical systems has exten-
sively considered very important. Sugar oxidation by electrocatalysis
carries importance in various areas, such as therapeutic applications,
wastewater treatment, biological fuel cell development, and analytical
applications of food enterprises. Glucose oxidation has been accepted
as a basic step for the oxidation of substantial organic materials and
examined through many scientists (Park et al., 2006; Kang et al., 2007;
Li et al., 2009; Wang et al., 2009; Si et al., 2013a, 2013b). In spite of
the fact that the glucose oxidation is thermodynamically advantageous,
its prolonged reaction kinetics using typical electrodes slows down its
usage in analytical analysis (Guo et al., 2013a, 2013b, 2013c). In
addition, the extensive over-potential of this reaction needs a high
applied potential, bringing about diminished selectiveness and,
furthermore, oxidation reaction products usually destroy the surface
of the electrodes (Guo et al., 2013a, 2013b, 2013c). Attraction is still

existent in the improvement of materials that can be used in the
electrocatalytic glucose reduction to lessen the normally large over
potentials experienced in its direct reduction at nearly all surfaces of
electrodes. For electrochemical glucose detection, enzymatic glucose
sensors have made several disadvantages such as high cost, instability,
immobilization problems between the electrode and the enzyme. In
contrast to enzymatic sensors, non-enzymatic glucose sensors have
benefits like being economic, high sensitivity, long-term stability
especially for the glucose oxidation (Park et al., 2006; Kang et al.,
2007; Li et al., 2009) Electroactivity degree toward carbohydrates,
particularly glucose, has been good when various transition metal and
metal oxide electrodes (Au, Co, Cu, In, Ni, NiO(OH), Pt, RuO2,
Ru,WO3, etc.) (Wang et al., 2009; Si et al., 2013a, 2013b; Guo et al.,
2013a, 2013b, 2013c; Wang et al., 2013; Huo et al., 2014a, 2014b; Li
et al., 2012; Ye et al., 2004) and different metal combinations or
composite electrodes (Au–Cu, Au–Ni, Ni–Cr, Pt–Pd, etc.) (Wang et al.,
2009; Si et al., 2013a, 2013b; Gavalas et al., 2004; Merkoci et al., 2005;
Wang and Lin, 2008) are utilized. Additionally, a few unique com-
pounds have been reported as electrocatalysts to adjust the surfaces of
electrodes to oxidize glucose (Chang et al., 2013; Zhao et al., 2013; Kim
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et al., 2014; Zhao et al., 2007a, 2007b; Li et al., 2011)Since carbon
nanotubes (CNTs) (Mu et al., 2011a, 2011b) have unique properties,
for example, critical mechanical quality, large surface area, fabulous
electrical conductivity, and great chemical stability, they have attracted
researchers for various uses. Other than different utilizations of the
CNTs, they are additionally of enthusiasm for making biosensors and
electrochemical sensors (Nai et al., 2013; Rasee and Fakhari, 2013).
Lately, some metal nanoparticles and CNT composites were presented
to demonstrate superior sensitivity on small molecules, for example,
hydrogen peroxide (Zhao et al., 2007a, 2007b), glucose (Yu et al., 2012)
and methanol (Çelik et al., 2016a, 2016b, 2016c). A few examinations
managing use of carbon nanotubes (Lu et al., 2009a, 2009b; Gao et al.,
2011) as promising catalyst supports have as of now been completed.
This study concentrates on utilization of multi-walled carbon nano-
tubes (MWCNTs) as catalyst support for the adjustment of a glassy
carbon–Ni nanoparticles electrode to enhance its electroactivity to-
wards glucose (Lu et al., 2013a, 2013b; Zhang et al., 2013; Liu et al.,
2009; Lu et al., 2013a, 2013b; Zhu et al., 2011; Ding et al., 2010; Chen
et al., 2013a, 2013b; Si et al., 2013a, 2013b). These metal nanoparticles
(NPs), give wide applications, for example, solid adsorption, substance
dependability efficient electro catalytic reaction of sensors and biosen-
sors. Moreover, in various studies, carbon-based materials are utilized
as support material. Among of these, carbon nanotubes (CNTs) have
large surface area, amazing conductivity and repairman toughness.
These properties of CNTs give all the more quickly electron-exchange
between metal nanoparticles and anode surface. To build the viability
and solvency of multi-walled carbon nanotubes, practical gatherings
side-dividers are connected by utilizing a great deal of procedures. One
of them is the treatment with solid acids. Thusly, metal nanoparticles
with altered carbon nanotubes are favoured for particularly sensor
applications (Wang et al., 2012a, 2012b; Zhang et al., 2011, 2012a,
2012b; Mathew and Sandhyarani, 2013; Chen et al., 2013a, 2013b). In
this study, highly monodisperse Ni nanoparticles supported on func-
tionalized multi-walled carbon nanotubes on glassy carbon (Ni@f-
MWCNT/GCE) electrode was used drop-casting method toward the
oxidation of glucose for non-enzymatic sensor. Prepared monodisperse
Ni@f-MWCNT nanocatalysts were investigated for the stability, selec-
tivity, sensitivity, linear range limit of detection (LOD) for non-
enzymatic glucose sensor.

2. Experimental section

2.1. Synthesis of monodisperse Ni@f-MWCNT NPs

To form a stable suspension, 0.25 mmol of Ni(Ac)2 was dispersed in
30 mL ethylene glycol solution under brisk stirring. The pH was
adjusted using NaOH–EG solution. Next, the beaker was kept in the
centre of microwave oven at 1200 W for 60 s. Under this condition, EG
was used as a reducing agent for Ni(Ac)2 reduction. At the end, the final
solution was filtered, and then washed several times with deionized
water and acetone. To stabilize the metal nanoparticles against
agglomeration, the microwave synthesis was carried out in the
presence of OA (oleylamine) where OA is used as a capping agent.
The prepared NPs were mixed with f-MWCNTs (1:1, v-v) by an
ultrasonic tip sonicator. Lastly, the Ni@f-MWCNT NPs were dried
under vacuum at room temperature (Xiu-tian-feng et al., 2014; Lin
et al., 2013).

3. Results and discussion

3.1. Material characterization

The characterization of f-MWCNT has been shown in Fig. S1 in
detail. Moreover, by the help of SEM, Ni@f-MWCNT NPs’ morpholo-
gies were determined. The Fig. S1(d) and (e) demonstrates a repre-
sentative SEM image of monodisperse Ni@f-MWCNT NPs that has the

mass of the Ni nanoparticles, having an approximate diameter of 9 nm.
This image indicates that the pure MWCNT having lengths up to
several micrometers and diameters up to few nanometers has no
impurity on their surfaces.

It can be seen that the monodisperse Ni nanoparticles decorated
MWCNTs are randomly distributed with uneven nanoparticles deco-
rated on the surface of the MWCNT tubes, and it seems like the plant
root nodules. The multi-walled-nanotubes were connected with Ni and
Ni NPs attached on multi-walled-nanotubes. The existence of nickel
and carbon was proved by EDS results (Fig. S1,e) (Xiu-tian-feng et al.,
2014; Lin et al., 2013; Huo et al., 2014a, 2014b; Karatepe et al., 2016).

The Fig. 1(a) displays a representative TEM image of monodisperse
Ni@f-MWCNT NPs. In this TEM image, it can be seen that all particles
exist homogeneously on the CNT surface and no agglomerations or
aggregations were observed. The average particle size was measured as
6.96 ± 1.05 nm. The Fig. 1(c) is the HRTEM image of Ni NPs and
displays the atomic lattice fringes. Here, Ni (111) spacing of 0.20 nm of
Ni NPs is exactly same with nominal Ni (111) spacing which reasserts
the nanoparticle formation. The Fig. 1(b) and (d) present the EELS
elemental color-mapping and the EELS line profile scanned on the
arrow of NPs, respectively. These EELS results also indicate the
existence of Ni@f-MWCNT NPs. In this study, XPS was employed to
study surface disposition and materials’ oxidation state (Yıldız et al.,
2016) of the Ni@f-MWCNT NPs. The Fig. 2(a) demonstrates the XPS
spectra that exhibits that the core level of Ni 2p3/2 was at 853.2 eV.
This finding suggests that the most of the Ni atoms were in the metallic
state (Çelik et al., 2016a, 2016b, 2016c). The particular Ni(II) peak
from 861. 5 eV as shown in Fig. 2(a) and (b) may indicate the oxidation
occurred in the surface and/or chemisorption of environmental oxygen
while the NPs were prepared. Moreover, using the relative peak area of
the Ni 2p3/2 spectrum, Ni(0) to Ni(II) ratio of the catalysts was found
to be 3.27. Fig. 2(c) represents the Raman spectrum of f-MWCNTs that
shows an augmented D/G ratio compared to the ratio that pristine
MWCNTs have (ID/IG=1.25 for f-MWCNTs and ID/IG=1.09 for
pristine MWCNTs). Fig. 2(d) and (e) show the atomic force microscopy
(AFM) (Çelik et al., 2016a, 2016b, 2016c; Erken et al., 2016; Ertan
et al., 2012) results that explain the height and lateral diameter
distribution. Although the AFM lateral diameter of the catalyst is much

Fig. 1. (a) Representative TEM image and nanoparticle size histogram, (b) EELS
elemental color-mapping, (c) Representative HRTEM image, and (d) EELS line profile
scanned on the arrow of Ni@f-MWCNT NPs.
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larger than the size of those obtained by the SEM and TEM which is
very likely due to the tip contamination and/or the tip convolution. The
obtained AFM particle height values of monodisperse Ni@f-MWCNT
NPs are in good agreement with the results obtained by the TEM.

3.2. Electrochemical properties

3.2.1. Cyclic voltammetry measurements
By cyclic voltammetry, the glucose oxidation at the bare GC

electrodes and modified GC electrodes was studied. Fig. 3(a) shows
the cyclic voltammetric responses that were obtained in 0.10 M NaOH
at the Ni/GCE and Ni@f-MWCNT/GCE electrodes. In the basic
medium, to detect glucose, CV data were obtained by glassy carbon
electrode and by glassy carbon electrode exposured to modification.

The data were achieved by Ni@GCE, Ni@f-MWCNT/GCE (a,c-without
glucose) and by Ni@GCE, Ni@f-MWCNT/GCE (b,d-with 0.1 mM
glucose). The anodic and cathodic peaks stand for Ni(II)/Ni(III) couple
were detected at about 0.56 and 0.33 V vs. Ag/AgCl, at a scan rate of
50 mV s−1, respectively. Notwithstanding the cathodic and anodic peak
potentials are very close for both Ni/GCE and Ni@f-MWCNT/GCE
modified electrodes, the cathodic and anodic peak currents in the Ni@
f-MWCNT/GCE modified electrode are significantly enhanced. This
relative enhancement in the peak current is due to a greater surface
area of the Ni@f-MWCNT/GCE modified electrode. These results
indicated that both Ni/GCE and Ni@f-MWCNT/GCE can catalyse the
electro-oxidation of glucose to gluconolactone (Zhu et al., 2011). The
glucose detection mechanism involved is proposed as follows: a layer of
Ni(OH)2 is generated on the surface of Ni@f-MWCNT/GCE during the

Fig. 2. (a) XPS spectra of Ni 2p for Ni@f-MWCNT, (b) XPS spectra of Ni 2p 3D view, (c) Raman spectrum of f-MWCNT, (d) AFM 3D view, and (e) AFM phase view of Ni@f-MWCNT.

Fig. 3. (a) Cyclic voltammograms obtained for “a)Ni/GCE” and “c)Ni@f-MWCNT/GCE” (without glucose) and “b)Ni/GCE” and “d)Ni@f-MWCNT/GCE” (with 0.1 mM glucose) at
50 mV/s scan rate in 0.1 M NaOH solution. (b) Cyclic voltammograms of the Ni@f-MWCNT/GCE in the presence of 1 mM glucose at varying scan rates: (a) 20, (b) 40, (c) 60, (d) 80, (e)
100, (f) 120, (g) 140, (h) 160, (i) 180, (j) 200 mV s−1, respectively. (Inset: plot of peak current (IP) vs. scan rate (V)).
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LSV process in alkaline medium. The produced Ni(OH)2 is further
oxidized to NiOOH on the Ni@f-MWCNT/GCE surface. The oxidation
of glucose to glucolactone catalyzed by the Ni(OH)2/ NiOOH redox
couple according to the following reactions leads to an increase of
anodic current:

2Ni(II) → 2Ni(III) + 2e−

2Ni(III) + glucose → 2Ni(II) + gluconolactone

In Fig. 3(b), the anodic peak currents obtained from the Ni@f-
MWCNT/GCE electrode in 0.1 M NaOH buffer at different scan rate
during the experiments at different scan speeds are demonstrated.

The electrochemical behaviours of Ni@f-MWCNT/GCE were in-
vestigated using 0.5 mM glucose at several scan rate values in 0.1 M
sodium hydroxide (Fig. 3(b)). As it is seen, reduction-oxidation peak
current of glucose was enhanced with increasing scan speed from
20 mV/s to 200 mV/s. This result suggests that the electro-catalytic
glucose oxidation is increased charge-transfer kinetic limitations within
the reactions among reduction-oxidation of glucose and Ni@f-
MWCNT/GCE. At this point, it is worth mentioning that as 0.1 M of
NaOH (a strong supporting electrolyte at high concentration) is
employed in all electrochemical investigations, expected chance of
potential shift to more positive values because of higher ohmic drop is
negligible. Furthermore, the anodic peak current measured at the Ni@
f-MWCNT/GCE modified electrode was found to be importantly
greater than the current value that the Ni/GCE electrode had. The
reason for this finding could be high electrode surface area when
carbon nanotubes exist (Fig. S2).

3.2.2. Optimization of sensor and amperometric measurements
The effect of glucose amount on anodic peak current was also

examined by the cyclic voltammetry using Ni@f-WCNT/GCE. Fig. 4(a)
shows CV data obtained by Ni@f-MWCNT/GCE electrode with differ-
ent glucose amounts (varying from 0.1mM to 0.6 mM in 0.1 M of
sodium hydroxide). In this figure, the relationship between glucose
amount and oxidation peak intensity was displayed. It is easy to see
that linear results were obtained when the glucose concentration was
up to 12 mM. The detection limit was found to be 2.10×10−5 mmol/L
which was three times of the signal to noise ratio. At higher glucose
concentrations, the current varies from the linearity, and the possible
reason for this could be passivating the electrode and/or glucose
isomers generation as these are known to happen in basic media. In
the meantime, saturations of active sites at the electrode surface
occurred and therefore the peak current tends to level off at higher
glucose concentrations (Fig. 4(a)–(c)).

Fig. 4(b) represents the amperometric responses of the monodis-
perse Ni@f-MWCNT/GCE electrode in 0.1 M NaOH solution at 0.56 V
with increment of glucose in 0.1 mM and 25 µM steps (insets in
Fig. 4(b) and Fig. 4(c), respectively). The electrode had an immediate
response when glucose was added, and after 3–5 s, the current reached
steady-state. In Fig. 4(b), linear equation between the measured
current (I) and the glucose was presented. It can be seen that very
high correlation coefficients of 0.9983 and 0.9897 were got in the range
of 25 μM to 1 mM glucose. One of the lowest detection limits was found
to be at the 0.021 μM glucose (S/N=3).

3.2.3. Reproducibility, stability and anti-interference property
The following molecules, namely DA (Dopamine), UA (Uric Acid),

Fig. 4. (a) Cyclic voltammograms of the Ni@f-MWCNT/GCE in 0.1 M NaOH solution at various glucose concentrations: (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5 and (f) 0.6. Inset; plot of
peak for linear range. (b) Amperometric responses of monodisperse Ni@f-MWCNT/GCE electrode when there was 0.1 mM of successive glucose additions (c) The amperometric current
plotted vs. total glucose concentration, and their corresponding linear calibration curves. (d) Amperometric responses of monodisperse Ni@f-MWCNT/GCE with 1.0 mM successive
glucose, 0.1 mM AA, UA, DA, fructose, lactose and NaCl additions. Experiments were run in 0.1 M NaOH solution at +0.50 V.
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AA (Ascorbic Acid), fructose, lactose and NaCl typically coexist with
glucose in real samples such as human blood when the glucose is
determined. Therefore, we studied the interference by measuring the
amperometric responses and the results were given in Fig. 4(d). In this
figure, experimental results run at 1 mM concentrations and at 0.5 V
were depicted. In our results, when 0.1 mM of AA, DA, UA, NaCl were
added, there was no distinct current response except lactose and
fructose. When 0.1 mM of lactose and fructose were added, current
response has been observed. Besides, when there was 1 mM glucose
addition, an important current response was observed. Thus, using
monodisperse Ni@f-MWCNT/GCE, interference of biomolecules to
glucose response is negligible.

In the present study, long-term stability of monodisperse Ni@f-
MWCNT/GCE was also examined. In this part, 10 mM glucose and
0.1 M NaOH solutions were used, and the results were given in Fig. S3.
Here, changes in the anodic peak currents of the electrode under dry
conditions at room temperature were measured. For both modified
electrodes, declines in peak currents occurred in the first three weeks.
It is worth noting that the peak current decline of the Ni/GCE is much
more declared than the result of Ni@f-MWCNT/GCE modified elec-
trode. In addition, for both cases, the reproducibility of the responses
are found to be 70 days. All these findings present that the Ni@f-
MWCNT/GCE modified electrode is stable for long-terms and suitable
for storage. Besides, monodisperse Ni@f-MWCNT/GCE are compared
with other Ni based sensor as shown in Table S1 in terms of LOD,
sensitivity and linear range and this table shows that monodisperse
Ni@f-MWCNT/GCE has much higher performances compared to the
others. (Lu et al., 2009a, 2009b; Mu et al., 2011a, 2011b; Yang et al.,
2013; Wang et al., 2012a, 2012b; Kong et al., 2010; Zhang et al.,
2012a, 2012b; Shen et al., 2016).

In our study, the applicability of the monodisperse Ni@f-MWCNT/
GCE electrode was tested using five different human blood serum
samples to determine glucose concentration. In those experiments,
50 µL of each blood serum was mixed with 10 mL of 0.1 M NaOH and
then their anodic peak currents were measured by utilizing the Ni@f-
MWCNT/GCE modified electrode. The experimental results obtained
from these runs are summarized in Table 1 and these data were
compared to a standard hospital blood glucose determination method
by using a commercial glucose sensor. In Table 1, it can be seen that
the obtained glucose results and commercial sensor results are in good
agreement. Furthermore, excellent recovery results were obtained
(between 96.4% and 98.7%).

4. Conclusions

Highly monodisperse Ni@f-MWCNT/GCE nanocomposites were
successfully synthesized using a simple and solvent-free method. The
synthesized nanocomposites were like plant root nodules. These novel
nanocomposites were used for glucose detection and a non-enzymatic
electrochemical sensor was built. This non-enzymatic glucose sensor
displays an outstanding sensitivity (70 mA mM−1 cm−2) at +0.5 V. Its

detection limit was achieved as 0.021 µM. As the synthesis of nano-
composites is easy and they have excellent electrochemical sensing
properties, the Ni@f-MWCNT/GCE is a very good non-enzymatic
glucose sensor candidate. Our results showed that the reactivity of
Ni@f-MWCNT/GCE was significantly improved when f-MWCNTs was
used as a support material for glucose oxidation in alkaline medium.
The unique structure, the specific interactions between Ni and f-
MWCNTs and large surface area to volume ratio of f-MWCNTs may
lead to a one of the record electrocatalytic activity. Another advanta-
geous feature of the Ni@f-MWCNT/GCE is its stability, as it showed
great stability even it was kept under dry conditions for more than ten
weeks. In addition, successful results were gathered when human
serum samples were used to determine glucose with the developed
modified electrode. As a result, it was observed that the glassy carbon
anode altered by Ni nanoparticles and MWCNT (Ni@f-MWCNT/GCE)
is profoundly viable electrode for glucose oxidation.
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